## PGP-UK Genomics Report for uk2293AB

## 1 Summary

This is the genome report was produced using collaborative research tools, including SNPedia and GetEvidence. This section shows an overview of all the small variants which were found in the genome for this individual, when compared with a reference genome. These variants are summarised in Table 1 and the pie-charts in Figures 2, 3 and 4.

This report was generated automatically and is not clinically approved. It is provided for personal and research purposes only.

This document contains hyperlinks, shown in grey, that will take you to external websites where you can find more detailed explanations. Some of the technical terms are also explained in more detail in the Ensembl Glossary. We would welcome your feedback about this report, for example, if you would like more information about anything or if any of the links have become inactive. You can contact us on: pgp-uk@ucl.ac.uk.

This summary shows an overview of all the variants which were found in the genome for this individual. The "variants remaining after filtering" refers to any differences in the DNA identified when compared to the reference genome. Of these, the majority will have already been found in some other sequenced individual and put on a database (existing variants) while others have not yet been annotated (novel variants).
"Overlapped genes" refers to the number of times where a variant was found in a region of the genome containing a gene. The diagram in Figure 1 is a simplification of the usual gene structure. "Exon" refers to the part of the gene which goes on to form a protein, and variants in this part of the gene are more likely to cause changes in the shape of the protein. Upstream, downstream, intronic and intergenic variants are more likely to alter the regulation of that gene but will not change the protein itself.

A transcript for a protein-coding gene can include the exons, introns and other gene features that are transcribed and important for gene function but might not be translated into the final protein. Not all transcripts are for protein-coding genes, with many containing non-coding RNAs that can be overlapping other genes, in introns or in intergenic regions.


Figure 1: Diagram of gene structure indicating locations of potential variants

| Feature | Count |
| :--- | :--- |
| Lines of input read | 603152 |
| Variants filtered out | 468719 |
| Novel / existing variants | $0(0.0) / 134433(100.0)$ |
| Overlapped genes | 33140 |
| Overlapped transcripts | 36466 |
| Overlapped regulatory features | 13027 |

Table 1: Variant calling summary

There are several different types of genomic variants. The most common change is when one single building block of the DNA (called a nucleotide) is changed, called a single nucleotide variants (SNV). Other variant types include insertions, where the DNA in the individual is longer than the reference sequence due to the insertion of one or more nucleotides; and deletions, where a few nucleotides are missing compared to the reference sequence.

Some of these changes will have no effect on the protein, while some changes may alter the protein function to varying degrees. The PolyPhen analysis software attempts to quantify the effect each mutation will have on the protein function. This ranges from "benign" where no change to the protein function is expected, to "probably damaging" where it is predicted that the mutation will affect protein function. It is nevertheless important to note that what is "damaging" for the protein is not necessarily damaging for the individual.


Figure 2: PolyPhen Summary


Figure 3: Variant Class


Figure 4: Consequence type

## 2 Ancestry

This plot shows the distribution of the genomes of different populations. Data from several studies which used whole genome sequencing was used to see the relationships between the genomes of the populations. It shows how closely related certain populations are genetically: Groups which cluster closely are more genetically similar than groups which are further apart. The black star symbol shows where this PGP-UK participant sits in relation to other populations, indicating their ancestry and their most closely related populations according to genetic sequence.

Please note that this analysis is limited by the populations available in the 1000 genomes project ( 1 kGP ) data. If there are European subpopulations reported, and the ancestry of the participant does not correspond to any of the 1 kGP populations, the closest 1 kGP sampled subpopulation will be shown (even though it might be different from the participant's actual ancestry).

## Ancestry uk2293AB



Figure 5: Ancestry Principal Component Analysis

## 3 Traits (based on SNPedia information)

Existing research has associated many variants with phenotypic traits, some of which can be perceived as beneficial while others appear to have a harmful effect. Some traits are complex and can be affected by several variants. It is likely that some of these would confer a higher risk while others a lower risk of trait manifestation. These can not be combined linearly to produce an actual risk of disease.

It is important to note that in most cases genomic data is probabilistic, not deterministic- i.e. having a genetic predisposition for a disease is not a diagnosis; rather, it shows an increased likelihood of developing that disease. Also, one person can have both potentially beneficial and harmful variants in the same gene, or associated with the same disease.

Some variants can also affect certain populations more, or will only affect a particular gender. For example, a variant for higher risk of endometriosis in the sequence of a male will not directly affect that person, but can be passed on to descendants.

While many traits are the result of a unique variant, many are the combination of several variants throughout the genome. In SNPedia, these are called genosets. These can integrate some of the information already present in the single variant tables, or be the combination of variants that have no phenotypic effect on their own, but contribute to a trait when together.

The variants in the following tables are sorted by magnitude. This is an subjective measure defined in SNPedia to highlight the perceived importance of the genotype described. At the moment this scale goes from 0 to 10 . You can read more about it by visiting their explanatory webpage.

As our knowledge grows, the interpretation of the effect of certain variants might change. Clicking on the links in the genome report tables will take you to websites containing more information about each variant.

### 3.1 Possibly Beneficial Traits

| Mag. | Identifier | Genotype | Summary | GnomAD | GetEvidence | ClinVar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | rs3782179 | (C; C) | 9x lower odds of testicular cancer | Link |  |  |
| 2 | rs10936599 | (C;C) | Longer telomeres: longer life? | Link |  | Link |
| 2 | rs11045585 | ( $\mathrm{A} ; \mathrm{A}$ ) | $24 \%$ chance (lower than average) of docetaxel-in... | Link | Link |  |
| 2 | rs1229984 | (A;G) | 0.56x decreased risk of oral/throat cancers | Link | Link | Link |
| 2 | rs12979860 | (C;C) | ~ $80 \%$ of such hepatitis C patients respond to tr... | Link | Link | Link |
| 2 | rs1544410 | (G;G) | Decreased risk of low bone mineral density diso... | Link | Link |  |
| 2 | rs1799884 | (G;G) | Mothers have typical Birth-Weight babies. Sligh... | Link |  |  |
| 2 | rs1864163 | ( $\mathrm{A} ; \mathrm{G}$ ) | Associated with higher HDL cholesterol | Link | Link |  |
| 2 | rs2241766 | (G;T) | Slightly lower risk of breast cancer | Link |  |  |
| 2 | rs261332 | ( $\mathrm{A} ; \mathrm{A}$ ) | Associated with higher HDL cholesterol | Link |  |  |
| 2 | rs3738579 | ( $\mathrm{C} ; \mathrm{T}$ ) | 0.5x decreased risk for cervical cancer: HNSCC:... | Link |  |  |
| 2 | rs3819331 | (T; T) | Lower risk of autism | Link |  | Link |
| 2 | rs4149268 | (G;G) | Associated with higher HDL cholesterol | Link | Link |  |
| 2 | rs6505162 | $(\mathrm{A} ; \mathrm{C})$ | 0.58x decreased risk for esophageal cancer | Link |  |  |
| 2 | rs7216389 | ( $\mathrm{C} ; \mathrm{C}$ ) | 0.69x lower risk of Childhood Asthma. | Link | Link |  |
| 1.8 | rs4714156 | ( $\mathrm{C} ; \mathrm{C}$ ) | $<0.61 \mathrm{x}$ risk for restless legs | Link |  |  |
| 1.8 | rs6897932 | (C;T) | 0.91x decreased risk for multiple sclerosis | Link | Link | Link |
| 1.6 | rs3775948 | ( $\mathrm{C} ; \mathrm{C}$ ) | Slightly lower risk for gout | Link |  |  |
| 1.5 | rs309375 | (G;G) | Smaller mosquito bites | Link |  |  |
| 1.5 | rs4939883 | (C;C) | Associated with higher HDL cholesterol | Link | Link |  |
| 1.5 | rs6427528 | ( $\mathrm{A} ; \mathrm{A}$ ) | For rheumatoid arthritis patients: better respo... | Link |  |  |
| 1.5 | rs9939609 | (T; T) | Lower risk of obesity and Type-2 diabetes | Link | Link |  |
| 1.2 | rs9306160 | ( $\mathrm{C} ; \mathrm{T}$ ) | 0.75x (reduced) risk for metastasis in LN-/ER + ... | Link | Link |  |
| 1.1 | rs2293347 | (G;G) | Among NSCLC patients: better Gefitinib response... | Link |  | Link |
| 1 | rs2494732 | (T; T) | Lower odds of psychosis | Link | Link |  |
| 1.0 | rs11246226 | (C;C) | Decreased risk of schizophrenia in limited stud... | Link | Link |  |
| 1.0 | rs6583817 | (C;T) | ${ }^{\sim} 0.80 \mathrm{x}$ (lower) risk for late onset Alzheimer's ... | Link |  |  |

### 3.2 Possibly Harmful Traits

| Mag. | Identifier | Genotype | Summary | GnomAD | GetEvidence | ClinVar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.5 | rs1801160 | (A;A) | 5-fluorouracil toxicity (?) | Link | Link | Link |
| 3 | rs1143679 | (A;A) | >1.78x increased risk for SLE | Link | Link |  |
| 3 | rs13266634 | (C;C) | Increased risk for type-2 diabetes | Link | Link | Link |
| 3 | rs16969968 | (A;A) | Higher risk for nicotine dependence: lower risk... | Link | Link | Link |
| 3 | rs2237717 | ( $\mathrm{T} ; \mathrm{T}$ ) | Reduced abilities related to neurocognition and... | Link |  |  |
| 2.6 | rs8034191 | (C;C) | 1.80x lung cancer risk; decreased response to a... | Link | Link |  |
| 2.5 | rs10490924 | (G;T) | 2.7 x risk for age related macular degeneration | Link | Link | Link |
| 2.5 | rs1051730 | (T;T) | 1.8x increased risk of lung cancer; reduced res... | Link | Link | Link |
| 2.5 | rs2241880 | (C;C) | $2 \mathrm{x}-3 \mathrm{x}$ increased risk for Crohn's disease in Cau... | Link | Link | Link |
| 2.5 | rs5888 | (C;T) | 3 x higher risk for age-related macular degenera... | Link |  |  |
| 2.5 | rs891512 | (A;G) | Higher blood pressure than G;G | Link |  | Link |
| 2.2 | rs964184 | (G;G) | Increased risk of hypertriglyceridemia | Link | Link |  |
| 2.1 | rs1050152 | (T; T) | 2.1x increased risk of Crohn's disease | Link | Link | Link |
| 2.1 | rs10811661 | (T; T ) | 1.2 x increased risk for type-2 diabetes | Link | Link |  |
| 2.1 | rs17070145 | (C;C) | Reduced memory abilities | Link |  | Link |
| 2.1 | rs17563 | (C;C) | Risk for otosclerosis | Link | Link | Link |
| 2.1 | rs2231142 | (A;C) | 1.74x increased gout risk; gefinitib takers 4 x ... | Link | Link | Link |
| 2.1 | rs2572886 | (A;A) | 1.4x increased risk of HIV infection | Link |  |  |
| 2.1 | rs5186 | (A;C) | $\sim 1.4 \mathrm{x}$ increased risk of hypertension | Link | Link | Link |
| 2.1 | rs5751876 | (T; T ) | Significantly higher anxiety levels after moder... | Link |  |  |
| 2 | rs1050631 | (C;T) | Mean Survival Time of 25 months for esophageal ... | Link |  |  |
| 2 | rs1064395 | (A;G) | Having any copies of A at this SNP heightens yo... | Link |  |  |
| 2 | rs10883365 | (G;G) | 1.62x increased risk for developing Crohn's dis... | Link | Link |  |
| 2 | rs10889677 | (C;C) | Baseline (average) risk for certain autoimmune ... | Link | Link |  |
| 2 | rs11171739 | (C;C) | 1.75x risk of developing Type-1 diabetes | Link | Link |  |
| 2 | rs1143699 | (C;C) | In men: 2.19x risk of type 2 diabetes | Link |  |  |
| 2 | rs13254738 | (C;C) | 1.18x prostate cancer risk | Link | Link |  |
| 2 | rs13376333 | (T;T) | ~ 2x higher risk of atrial fibrillation | Link | Link |  |
| 2 | rs16942 | (G;G) | Very slightly increased breast cancer risk | Link | Link | Link |
| 2 | rs17115100 | (T;T) | Increased risk of developing Parkinson's Diseas... | Link | Link |  |
| 2 | rs1734791 | (A;A) | 1.4 x increased risk for lupus | Link |  |  |
| 2 | rs1800896 | (A;A) | 1.8x increased prostate cancer risk | Link |  |  |
| 2 | rs1867277 | (A;A) | 2 x increased risk for thyroid cancer | Link |  |  |
| 2 | rs2143340 | (C;T) | Increased risk of dyslexia and poor reading per... | Link |  |  |
| 2 | rs2305795 | (A;G) | 1.28x higher risk of narcolepsy compared to (G;... | Link |  | Link |
| 2 | rs2542151 | (G;G) | 2x risk for Crohn's; 1.6x for T1D | Link | Link |  |
| 2 | rs25487 | (G;G) | 2x higher risk for skin cancer; possibly other ... | Link | Link | Link |
| 2 | rs2697962 | (A;A) | Increased risk of developing Parkinson's Diseas... | Link |  |  |
| 2 | rs2736100 | (T; T) | Higher risk of Interstitial lung disease: and t... | Link | Link | Link |
| 2 | rs3025039 | (C;T) | 2.6x increased risk for ARMD in a Taiwanese pop... | Link |  |  |
| 2 | rs351855 | (C;T) | 1.2x increased risk for prostate cancer | Link | Link | Link |
| 2 | rs3738919 | (A;C) | 1.94 x risk of developing rheumatoid arthritis | Link |  |  |
| 2 | rs3802842 | (C;C) | $>1.17 \mathrm{x}$ increased risk of colorectal cancer | Link | Link |  |
| 2 | rs4792311 | (A;G) | Increased risk of prostate cancer | Link | Link | Link |
| 2 | rs520354 | (A;A) | Increased risk in men for biliary conditions | Link |  |  |
| 2 | rs6807362 | (C;C) | Increased autism risk | Link | Link |  |
| 2 | rs699 | (C;T) | Increased risk of hypertension | Link | Link | Link |
| 2 | rs763361 | (T; T) | Increased risk for multiple autoimmune diseases... | Link | Link |  |
| 2 | rs800292 | (C;C) | 5\% higher risk of Age related macular degenerat... | Link | Link | Link |
| 2 | rs828907 | (G;T) | Slightly increased risk of bladder cancer and 2... | Link |  |  |
| 2 | rs854560 | (A;T) | Higher risk for heart disease: diabetic retinop... | Link | Link | Link |
| 2 | rs9652490 | (A;A) | ~ 2 x increased risk for Parkinson's disease: and... | Link | Link |  |
| 2.0 | rs1434536 | (A;A) | 1.94x increased breast cancer risk | Link |  | Link |


| Mag. | Identifier | Genotype | Summary | GnomAD | GetEvidence | ClinVar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 | rs2156921 | (G;G) | 1.29x increased risk for depression | Link |  |  |
| 1.8 | rs2278206 | ( $\mathrm{T} ; \mathrm{T}$ ) | 1.16x increased risk for asthma | Link | Link |  |
| 1.7 | rs4807015 | (C;T) | 1.74 x risk of type 2 diabetes | Link |  |  |
| 1.6 | rs3764880 | ( $\mathrm{A} ; \mathrm{A}$ ) | 1.2-1.8x increased tuberculosis risk | Link | Link |  |
| 1.5 | rs1169300 | (A;G) | $\sim 1.5 \mathrm{x}$ increased lung cancer risk | Link |  |  |
| 1.5 | rs12498742 | (A;A) | 1.25 increased risk for gout | Link |  |  |
| 1.5 | rs13149290 | (C;C) | Slightly increased risk of developing prostate ... | Link |  |  |
| 1.5 | rs1375144 | (C;C) | 1.59x increased risk of developing bipolar diso... | Link |  |  |
| 1.5 | rs140701 | (A;G) | Increased risk for anxiety disorders | Link |  |  |
| 1.5 | rs165599 | (G;G) | May indicate increased susceptibility to schizo... | Link | Link |  |
| 1.5 | rs1801274 | (C;T) | Complex; generally greater risk for cancer prog... | Link | Link | Link |
| 1.5 | rs2076295 | (G;G) | Slightly increased risk for pulmonary fibrosis ... | Link |  |  |
| 1.5 | rs2229169 | (A;A) | 1.5x increased risk of heart attack and stroke ... | Link |  |  |
| 1.5 | rs2240340 | (A;A) | Slightly increased (1.5x) risk for RA | Link |  |  |
| 1.5 | rs2272127 | (C;C) | Associated with herpes and schizophrenia | Link |  |  |
| 1.5 | rs2464196 | (C;T) | ${ }^{\sim} 1.5 \mathrm{x}$ increased lung cancer risk | Link | Link | Link |
| 1.5 | rs28694718 | (A;G) | 2x higher risk for schizophrenia | Link |  |  |
| 1.5 | rs2881766 | (T;T) | Slightly increased risk for pregnancy-induced h... | Link |  |  |
| 1.5 | rs356220 | ( $\mathrm{T} ; \mathrm{T}$ ) | Increased risk of Parkinson's Disease | Link |  |  |
| 1.5 | rs4585 | ( $\mathrm{T} ; \mathrm{T}$ ) | Slightly poorer (0.75x) response to metformin i... | Link |  | Link |
| 1.5 | rs464049 | ( $\mathrm{T} ; \mathrm{T}$ ) | Increased risk of schizophrenia in limited stud... | Link |  |  |
| 1.5 | rs486907 | (A;G) | 1.5x increased prostate cancer risk | Link | Link | Link |
| 1.5 | rs4939827 | ( $\mathrm{T} ; \mathrm{T}$ ) | 1x risk for colorectal cancer | Link | Link | Link |
| 1.5 | rs5219 | (C;T) | 1.3 x increased risk for type-2 diabetes | Link | Link | Link |
| 1.5 | rs699473 | (C;C) | ${ }^{\text {1 }} 1.5 \mathrm{x}$ increased brain tumor risk | Link |  |  |
| 1.5 | rs995030 | (G;G) | Non-protective against testicular cancer | Link | Link |  |
| 1.4 | rs10865331 | (A;A) | 1.4x higher risk for ankylosing spondylitis | Link |  |  |
| 1.4 | rs1126497 | (C;T) | 1.4 x increased risk for breast cancer | Link | Link | Link |
| 1.4 | rs1801157 | (A;A) | 1.4x higher risk for breast cancer | Link |  |  |
| 1.4 | rs2228314 | (C;G) | 1.48x risk of osteoarthritis | Link | Link |  |
| 1.4 | rs3184504 | (C;T) | Slightly increased risk for celiac disease | Link | Link |  |
| 1.4 | rs498872 | (T; T ) | 1.4x higher risk for glioma development | Link | Link |  |
| 1.4 | rs6010620 | (G;G) | 1.4x higher risk for glioma development; but th... | Link | Link |  |
| 1.34 | rs17465637 | (C;C) | 1.34x higher risk for myocardial infarction | Link | Link |  |
| 1.3 | rs1042713 | (A;G) | 1.3x increased risk that pediatric inhaler use ... | Link | Link | Link |
| 1.3 | rs1260326 | (C;T) | Slightly higher risk for gout | Link | Link | Link |
| 1.3 | rs1746048 | (C;C) | 1.03 increased risk for coronary heart disease | Link | Link |  |
| 1.2 | rs1344706 | (T;T) | 1.2 x increased risk for schizophrenia | Link | Link |  |
| 1.2 | rs2254958 | (C;T) | 1.24x reported increased risk for Alzheimer's; ... | Link |  |  |
| 1.2 | rs35677470 | (A;G) | 2x higher risk for scleroderma | Link | Link |  |
| 1.2 | rs7514229 | (G;G) | Associated with early-onset autoimmune thyroid ... | Link |  |  |
| 1.15 | rs748404 | (C;T) | Very slightly increased risk (1.15) for lung ca... | Link | Link |  |
| 1.1 | rs11037909 | (C;T) | 1.27x type II diabetes risk | Link |  |  |
| 1.1 | rs11650354 | (C;T) | Possible risk for allergic asthma | Link |  |  |
| 1.1 | rs2235040 | (G;G) | Possibly lesser chances of remission only for i... | Link | Link |  |
| 1.1 | rs2653349 | (G;G) | 2-6x increased risk for cluster headaches | Link | Link |  |
| 1.1 | rs2828520 | (G;G) | 1.35x major depressive disorder risk | Link |  |  |
| 1.1 | rs34516635 | (G;G) | Less longevity for Ashkenazi Jewish women. | Link |  | Link |
| 1.1 | rs3740878 | (A;G) | 1.26x type II diabetes risk | Link |  | Link |
| 1.07 | rs2291834 | (C;C) | Very slightly higher risk for myocardial infarc... | Link |  |  |
| 1 | rs1010 | (A;G) | 1.75x risk of MI | Link | Link |  |
| 1 | rs11206244 | (C;T) | Slight risk of decreased thyroid hormone metabo... | Link |  |  |
| 1 | rs1143674 | (A;G) | 1.3x increased autism risk | Link |  |  |
| 1 | rs17300539 | (G;G) | Increased risk of insulin resistance | Link |  |  |
| 1 | rs3194051 | (A;G) | 1.12 x risk of type-1 diabetes | Link | Link | Link |


| Mag. | Identifier | Genotype | Summary | GnomAD | GetEvidence | ClinVar |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | rs6976 | (C;T) | Slight risk of osteoarthritis | Link |  |  |
| 0.1 | rs2070744 | (C;C) | Increased prostate cancer risk | Link | Link | Link |
| 0.1 | rs601338 | (G;G) | Susceptible to Norovirus infections | Link | Link |  |

### 3.3 Genosets (Multi-variant Phenotypes)

| Magnitude | Identifier | Summary |
| :--- | :--- | :--- |
| 4 | gs144 | Male |
| 3.0 | gs291 | Lower heart attack risk than average |
| 2.9 | gs192 | MTHFR polymorphisms affecting homocysteine |
| 2.5 | gs100 | Lactose intolerance risk |
| 2.5 | gs155 | CYP3A5 non-expressor |
| 2.5 | gs281 | Part of the 88\% of the population claimed not t... |
| 2.5 | gs285 | Claimed to lose 2.5x as much weight on a low fa... |
| 2 | gs140 | NAT2 slow metabolizer |
| 2 | gs154 | NAT2 Slow metabolizer |
| 2 | gs159 | CYP1A2 fast metabolizer |
| 2 | gs313 | Normal DPYD activity and thus 5-FU metabolism p... |
| 1.7 | gs233 | Normal pain sensitivity; APS/APS: LPS/APS: and ... |
| 1.5 | gs247 | Parkinson's Disease Risk |

## 4 Report Metadata

| Resource | Version | Website |
| :--- | :--- | :--- |
| Genome | GRCh37 | Link |
| BWA | 0.7 .12 | Link |
| SAMtools | 1.3 | Link |
| GATK | $3.4-46$ | Link |
| PLINK | v1.90b3.35 | Link |
| SNPedia | 02-May-2019 | Link |
| GnomAD | v2.1.1 | Link |
| GetEvidence | 10-May-2019 | Link |
| ClinVar | 10-May-2019 | Link |

Table 5: Analysis Pipeline Versions

Report generated on June 13, 2019.

