PGP-UK Genomics Report for uk5F1C15

1 Summary

This is the genome report was produced using collaborative research tools, including SNPedia and GetEvidence. This section shows an overview of all the small variants which were found in the genome for this individual, when compared with a reference genome. These variants are summarised in Table 1 and the pie-charts in Figures 2,3 and 4.

This report was generated automatically and is not clinically approved. It is provided for personal and research purposes only.

This document contains hyperlinks, shown in grey, that will take you to external websites where you can find more detailed explanations. Some of the technical terms are also explained in more detail in the Ensembl Glossary. We would welcome your feedback about this report, for example, if you would like more information about anything or if any of the links have become inactive. You can contact us on: pgp-uk@ucl.ac.uk.

This summary shows an overview of all the variants which were found in the genome for this individual. The "variants remaining after filtering" refers to any differences in the DNA identified when compared to the reference genome. Of these, the majority will have already been found in some other sequenced individual and put on a database (existing variants) while others have not yet been annotated (novel variants).
"Overlapped genes" refers to the number of times where a variant was found in a region of the genome containing a gene. The diagram in Figure 1 is a simplification of the usual gene structure. "Exon" refers to the part of the gene which goes on to form a protein, and variants in this part of the gene are more likely to cause changes in the shape of the protein. Upstream, downstream, intronic and intergenic variants are more likely to alter the regulation of that gene but will not change the protein itself.

A transcript for a protein-coding gene can include the exons, introns and other gene features that are transcribed and important for gene function but might not be translated into the final protein. Not all transcripts are for protein-coding genes, with many containing non-coding RNAs that can be overlapping other genes, in introns or in intergenic regions.

Figure 1: Diagram of gene structure indicating locations of potential variants

Feature	Count
Lines of input read	4980144
Variants filtered out	0
Novel / existing variants	$471675(9.5) / 4497141(90.5)$
Overlapped genes	56692
Overlapped transcripts	67533
Overlapped regulatory features	168302

Table 1: Variant calling summary

There are several different types of genomic variants. The most common change is when one single building block of the DNA (called a nucleotide) is changed, called a single nucleotide variants (SNV). Other variant types include insertions, where the DNA in the individual is longer than the reference sequence due to the insertion of one or more nucleotides; and deletions, where a few nucleotides are missing compared to the reference sequence.

Some of these changes will have no effect on the protein, while some changes may alter the protein function to varying degrees. The PolyPhen analysis software attempts to quantify the effect each mutation will have on the protein function. This ranges from "benign" where no change to the protein function is expected, to "probably damaging" where it is predicted that the mutation will affect protein function. It is nevertheless important to note that what is "damaging" for the protein is not necessarily damaging for the individual.

Figure 2: PolyPhen Summary

Figure 3: Variant Class

Figure 4: Consequence type

2 Ancestry

This plot shows the distribution of the genomes of different populations. Data from several studies which used whole genome sequencing was used to see the relationships between the genomes of the populations. It shows how closely related certain populations are genetically: Groups which cluster closely are more genetically similar than groups which are further apart. The black star symbol shows where this PGP-UK participant sits in relation to other populations, indicating their ancestry and their most closely related populations according to genetic sequence.

Based on the populations defined in the 1000 genomes project (1 kGP), the ancestry composition for this individual is inferred to be 100.0 percent European [Toscani in Italia, Finnish in Finland].

Please note that this analysis is limited by the populations available in the 1 kGP data. If there are European subpopulations reported, and the ancestry of the participant does not correspond to any of the 1 kGP populations, the closest 1 kGP sampled subpopulation will be shown (even though it might be different from the participant's actual ancestry).

Ancestry uk5F1C15

Figure 5: Ancestry Principal Component Analysis

3 Traits (based on SNPedia information)

Existing research has associated many variants with phenotypic traits, some of which can be perceived as beneficial while others appear to have a harmful effect. Some traits are complex and can be affected by several variants. It is likely that some of these would confer a higher risk while others a lower risk of trait manifestation. These can not be combined linearly to produce an actual risk of disease.

It is important to note that in most cases genomic data is probabilistic, not deterministic- i.e. having a genetic predisposition for a disease is not a diagnosis; rather, it shows an increased likelihood of developing that disease. Also, one person can have both potentially beneficial and harmful variants in the same gene, or associated with the same disease.

Some variants can also affect certain populations more, or will only affect a particular gender. For example, a variant for higher risk of endometriosis in the sequence of a male will not directly affect that person, but can be passed on to descendants.

While many traits are the result of a unique variant, many are the combination of several variants throughout the genome. In SNPedia, these are called genosets. These can integrate some of the information already present in the single variant tables, or be the combination of variants that have no phenotypic effect on their own, but contribute to a trait when together.

The variants in the following tables are sorted by magnitude. This is an subjective measure defined in SNPedia to highlight the perceived importance of the genotype described. At the moment this scale goes from 0 to 10 . You can read more about it by visiting their explanatory webpage.

As our knowledge grows, the interpretation of the effect of certain variants might change. Clicking on the links in the genome report tables will take you to websites containing more information about each variant.

3.1 Possibly Beneficial Traits

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
3	rs7294919	(C;T)	Moderately enhanced hippocampal volume			
2.5	rs2943634	($\mathrm{A} ; \mathrm{A}$)	Lower risk of ischemic stroke		Link	
2.4	rs9272346	(G;G)	0.08x risk type-1 diabetes		Link	
2.2	rs3816873	(C;C)	Reduced risk of type-2 diabetes	Link	Link	Link
2.1	rs2511989	(A;G)	0.63x decreased age-related macular degeneratio...		Link	
2.1	rs3775291	(A;G)	0.71x decreased risk for dry age related macula...	Link	Link	Link
2	rs1026732	($\mathrm{A} ; \mathrm{A}$)	$<0.70 \mathrm{x}$ risk for restless legs		Link	
2	rs10468017	(C;T)	Associated with higher HDL cholesterol		Link	
2	rs10504861	(A;G)	Reduced risk of migraine without aura			
2	rs11045585	($\mathrm{A} ; \mathrm{A}$)	24% chance (lower than average) of docetaxel-in...		Link	
2	rs1128535	(G;G)	Reduced risk (0.77x) for Crohn's disease			
2	rs1160312	(G;G)	Reduced risk of Baldness.		Link	
2	rs11635424	(A;A)	$<0.70 \mathrm{x}$ risk for restless legs		Link	
2	rs12593813	($\mathrm{A} ; \mathrm{A}$)	<0.71 x risk for restless legs		Link	
2	rs12979860	(C;C)	~ 80% of such hepatitis C patients respond to tr...		Link	Link
2	rs1544410	(G;G)	Decreased risk of low bone mineral density diso...		Link	
2	rs17070145	(C;T)	Increased memory performance			Link
2	rs1799884	(G;G)	Mothers have typical Birth-Weight babies. Sligh...			
2	rs1864163	(G;G)	Associated with higher HDL cholesterol		Link	
2	rs2241423	(A;G)	0.79 decreased risk for obesity			
2	rs2243250	(C;T)	0.6x decreased risk for myocardial infarction i...			
2	rs2542052	(C;C)	Better odds of living to 100			
2	rs2707466	(A;A)	Stronger bones	Link	Link	
2	rs2908004	(T; T)	Stronger bones	Link	Link	
2	rs3738579	(C;T)	0.5x decreased risk for cervical cancer: HNSCC:...			
2	rs3750817	(C;T)	0.78x reduced risk for breast cancer			
2	rs3764261	(G;T)	Associated with higher HDL cholesterol		Link	Link

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
2	rs4073582	(A;A)	Lower risk for gout	Link		
2	rs4585	(G;G)	Slightly higher (1.35x) odds of good metformin ...			
2	rs6505162	(A;C)	0.58x decreased risk for esophageal cancer	Link		
2	rs763110	(C;T)	~0.80x reduced cancer risk			Link
2	rs801114	($\mathrm{T} ; \mathrm{T}$)	0.78x decreased Basal Cell Carcinoma risk.		Link	
2	rs8070723	(A;G)	0.18x reduced risk of developing progressive su...			
2	rs9642880	(G;G)	Slightly lower risk of Bladder Cancer.		Link	
1.8	rs187238	(C;G)	Hypertension not a risk factor for sudden cardi...			
1.8	rs3814113	(C;T)	0.8x decreased risk for ovarian cancer		Link	
1.8	rs7101429	(A;G)	0.70x reduced risk for Alzheimer's risk			
1.6	rs1061170	(T; T)	Lower risk for AMD: generally longer live than ...	Link	Link	Link
1.5	rs1063192	(C;T)	0.71x reduced risk of myocardial infarction			
1.5	rs11212617	(C;C)	Somewhat increased likelihood of treatment succ...			Link
1.5	rs11465804	(G;T)	0.68x lower risk for spondylitis	Link	Link	
1.5	rs3851179	(A;G)	0.85x decreased risk for Alzheimer's disease		Link	
1.5	rs4939883	(C;C)	Associated with higher HDL cholesterol		Link	
1.5	rs5888	(C;C)	Higher HDL cholesterol but lower risk for age-r...	Link		
1.5	rs6427528	(A;G)	For rheumatoid arthritis patients: better respo...			
1.5	rs729302	($\mathrm{A} ; \mathrm{C}$)	0.89x decreased risk of developing rheumatoid a...			
1.4	rs6700125	(C;C)	0.7x decreased risk for ALS			
1.2	rs11246226	(A;C)	Decreased risk of schizophrenia in limited stud...		Link	
1.2	rs9306160	(C;T)	0.75x (reduced) risk for metastasis in LN-/ER + ...	Link	Link	
1.1	rs11172113	(C;T)	0.9x lower risk for migraines			
1.1	rs2293347	(G;G)	Among NSCLC patients: better Gefitinib response...	Link		Link
1	rs182549	(C;T)	Can digest milk.			Link
1	rs7850258	(A;G)	Typical odds of developing primary hypothyroidi...			
1	rs800292	(C;T)	1% decreased risk of macular degeneration	Link	Link	Link
0.5	rs36094464	(A;T)	Most likely benign: though reported years ago t...	Link	Link	Link
0.1	rs1726866	(C;C)	Can taste bitter	Link	Link	Link
0	rs10427255	(T;T)	Lowest odds of photic sneeze reflex			
0	rs1047781	($\mathrm{A} ; \mathrm{A}$)	ABH blood group "Secretor" status if Japanese	Link	Link	Link
0	rs1126809	(A;G)	Slight increase in skin cancer risk	Link	Link	Link
0	rs12252	(T; T)	More resistant to influenza	Link		Link
0	rs16990018	($\mathrm{A} ; \mathrm{A}$)	PrP Codon 171 Asn - Non-pathogenic variant	Link		Link
0	rs17244841	(A;A)	More responsive to statin treatment		Link	Link
0	rs1799782	(C;C)	Lower risk for skin cancer	Link	Link	
0	rs1799945	(C;C)	Not a H63D hemochromatosis carrier.	Link	Link	Link
0	rs1800562	(G;G)	Not a C282Y hemochromatosis carrier.	Link	Link	Link
0	rs242941	(G;G)	Better response to inhaled corticosteroid in pa...		Link	
0	rs28933385	(G;G)	Prion protein Codon 200 (E) - Non pathogenic va...			Link
0	rs41303129	(C;T)	Likely to be a benign variant according to Clin...	Link		Link
0	rs6259	(G;G)	Best inverse correlation between tea-drinking: ...	Link	Link	
0	rs74315403	(G;G)	PrP codon 178 (D) - non pathogenic variant			Link
0	rs7495174	(A;A)	Blue/gray eyes more likely		Link	
0	rs9951307	(A;G)	0.10 decreased risk for brain edema after a str...			

3.2 Possibly Harmful Traits

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
3	rs1042838	(T;T)	1.42x risk for endometrial ovarian cancer; over...	Link	Link	
3	rs10897346	(C;C)	If depressed: 2.6 x more likely to not respond t...			
3	rs13266634	(C;C)	Increased risk for type-2 diabetes	Link	Link	Link
3	rs16969968	($\mathrm{A} ; \mathrm{A}$)	Higher risk for nicotine dependence: lower risk...	Link	Link	Link
3	rs2306402	(C;C)	1.18x increased risk for late-onset Alzheimer's...			
3	rs3903239	(C;C)	Higher frequency of atrial fibrillation			
3	rs6920220	(A;G)	1.2x risk Rheumatoid Arthritis		Link	
3	rs7754840	(C;G)	1.3 x increased risk for type-2 diabetes		Link	
2.7	rs10830963	(C;G)	Increased type-2 diabetes risk; higher gestatio...		Link	
2.6	rs8034191	(C;C)	1.80x lung cancer risk; decreased response to a...		Link	
2.5	rs10484554	(C;T)	2.8x increased risk for psoriasis		Link	
2.5	rs10490924	(G;T)	2.7x risk for age related macular degeneration	Link	Link	Link
2.5	rs1051730	($\mathrm{T} ; \mathrm{T}$)	1.8x increased risk of lung cancer; reduced res...	Link	Link	Link
2.5	rs1057910	($\mathrm{A} ; \mathrm{C}$)	CYP2C9*3 carrier; average 40\% reduction in warf...	Link	Link	Link
2.5	rs11190870	(T;T)	Possibly even more increased risk of scoliosis			
2.5	rs1121980	(C;T)	1.67 x risk for obesity		Link	
2.5	rs1421085	(C;T)	1.3x increased obesity risk		Link	Link
2.5	rs2241880	(C;C)	2x-3x increased risk for Crohn's disease in Cau...	Link	Link	Link
2.5	rs613872	(G;T)	${ }^{-5}$ fold higher risk for Fuchs' dystrophy: a cor...			
2.5	rs664143	(T;T)	Higher risk for number of cancers			
2.5	rs7574865	(G;T)	1.3x risk of rheumatoid arthritis; 1.55x risk o...		Link	Link
2.5	rs891512	(A;G)	Higher blood pressure than G;G	Link		
2.4	rs7966230	(G;G)	Slightly lower levels of plasma VWF			
2.2	rs1052133	(G;G)	2x increased bladder cancer risk; 4.5x increase...	Link	Link	
2.2	rs2231137	(G;G)	${ }^{2} 1.5-3 \mathrm{x}$ increased risk for ischemic stroke	Link	Link	Link
2.1	rs2254958	(C;T)	1.24x increased risk for Alzheimer's			
2.1	rs4430796	(A;A)	1.38 x increased risk for prostate cancer		Link	
2.1	rs795484	(A;G)	Increased morphine dose requirement and postope...			
2.1	rs944289	(C;T)	1.3 x increased thyroid cancer risk		Link	
2	rs1024611	(C;T)	Increased risk of exercise induced ischemia			Link
2	rs10248420	(A;A)	7x less likely to respond to certain antidepres...		Link	
2	rs1050152	(C;T)	2.1x increased risk of Crohn's disease	Link	Link	Link
2	rs10811661	(C;T)	1.2 x increased risk for type-2 diabetes		Link	
2	rs10984447	(A;A)	$>1.17 \mathrm{x}$ increased risk for multiple sclerosis		Link	
2	rs11983225	(T;T)	7x less likely to respond to certain antidepres...		Link	
2	rs12567232	(A;G)	Increased risk for Crohn's Disease		Link	
2	rs13254738	(A;C)	1.18x prostate cancer risk		Link	
2	rs16942	(A;G)	Very slightly increased breast cancer risk	Link	Link	Link
2	rs16944	(G;G)	Increased risk of mental disorders		Link	
2	rs17001266	(-;C)	1.58x increased risk for schizophrenia in males...			
2	rs1734791	$(\mathrm{A} ; \mathrm{T})$	1.4 x increased risk for lupus			
2	rs17435	(A;T)	1.4 x increased risk for lupus			
2	rs2073963	(G;T)	Increased risk of baldness			
2	rs2143340	(C;T)	Increased risk of dyslexia and poor reading per...			
2	rs2156921	(A;G)	1.29 x increased risk for depression			
2	rs2201841	(C;T)	1.5x increased risk for Crohn's disease; 2x inc...		Link	
2	rs2230201	(G;G)	$>1.4 \mathrm{x}$ risk of lupus	Link		
2	rs2235015	(G;G)	Somewhat less likely to respond to certain anti...	Link	Link	
2	rs2235040	(G;G)	7x less likely to respond to certain antidepres...	Link	Link	
2	rs2235067	(G;G)	7x less likely to respond to certain antidepres...			
2	rs2274223	(A;G)	1.5x increased risk for stomach and esophageal ...	Link	Link	Link
2	rs2305480	(C;T)	3.5x increase in risk of asthma for Han Chinese...	Link	Link	
2	rs25487	(G;G)	2x higher risk for skin cancer; possibly other ...	Link	Link	Link

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
2	rs2572886	(A;G)	1.4x increased risk of HIV infection			
2	rs27388	(A;A)	Increased risk of developing schizophrenia			
2	rs358806	(C;C)	1.78x increased risk of developing Type-2 diabe...		Link	
2	rs3738919	$(\mathrm{A} ; \mathrm{C})$	1.94x risk of developing rheumatoid arthritis			
2	rs3775948	(G;G)	Slightly higher risk for gout			
2	rs4148739	$(\mathrm{A} ; \mathrm{A})$	7x less likely to respond to certain antidepres...		Link	
2	rs4402960	(G;T)	1.2x increased risk for type-2 diabetes: ${ }^{\sim} 1 \mathrm{x}$ ri...		Link	Link
2	rs4464148	(C;C)	1.35x increased risk for colorectal cancer			
2	rs4633	(C;T)	Higher risk for endometrial cancer	Link	Link	Link
2	rs493258	(A;G)	1.15x risk of Age Related Macular Degeneration			
2	rs4961	(G;T)	1.8x increased risk for high blood pressure	Link	Link	Link
2	rs6441286	(G;T)	1.54 x chance of developing primary biliary cirr...		Link	
2	rs663048	(G;T)	Significantly increased risk of developing lung...	Link	Link	
2	rs6896702	($\mathrm{T} ; \mathrm{T}$)	Increased risk of developing Parkinson's Diseas...			
2	rs6897932	(C;C)	1.08x increased risk for multiple sclerosis	Link	Link	Link
2	rs6908425	(C;C)	1.95x increased risk of developing Crohn's dise...		Link	
2	rs6997709	(G;T)	1.2x higher risk for hypertension			
2	rs699	(C;T)	Increased risk of hypertension	Link	Link	Link
2	rs7442295	(A;A)	$\sim 4 \mathrm{x}$ higher risk for hyperuracemia		Link	
2	rs7639618	(C;T)	1.45x increased osteoarthritis risk	Link		
2	rs7774434	(C;C)	Increased risk of developing primary biliary ci...			
2	rs7794745	(T;T)	Slightly increased risk for autism		Link	Link
2	rs7807268	(C;C)	1.4x risk for Crohn's disease		Link	
2	rs7923837	(G;G)	3.2x risk for T2D			
2	rs854560	(A;T)	Higher risk for heart disease: diabetic retinop...	Link	Link	Link
2	rs855913	(G;T)	Reduced survival with ALS		Link	
2	rs9652490	(A;A)	2x increased risk for Parkinson's disease: and...		Link	
2	rs965513	(A;G)	1.77 x increased thyroid cancer risk		Link	
2	rs987525	(A;A)	6x increased risk for cleft lip		Link	
2	rs9954153	(G;T)	~2.5x higher risk for Fuchs' dystrophy: a corne...			
2.0	rs2305795	(A;A)	1.64x higher risk of narcolepsy compared to (G;...			Link
2.0	rs4911414	(G;T)	$2-4 \mathrm{x}$ higher risk of sun sensitivity if part of ...		Link	
1.8	rs1136287	(C;T)	1.5x increased risk of wet ARMD in a Taiwanese ...	Link	Link	
1.8	rs2278206	($\mathrm{T} ; \mathrm{T}$)	1.16x increased risk for asthma	Link	Link	
1.8	rs37973	(A;G)	Among asthmatics: 1.5x more likely to show less...			Link
1.8	rs733618	(A;G)	1.87 x risk for myasthenia gravis			
1.7	rs8055236	(G;T)	1.9x risk for heart disease		Link	
1.6	rs11523871	$(\mathrm{A} ; \mathrm{C})$	1.6x increased breast cancer risk for women ove...	Link	Link	
1.6	rs1260326	(T;T)	Slightly higher risk for gout	Link	Link	Link
1.6	rs2736100	(G;G)	1.6x higher risk for glioma development		Link	
1.6	rs2981745	(C;T)	1.6x increased risk for breast cancer in female...			
1.6	rs33980500	(C;T)	1.6x increase in risk for psoriatic arthritis	Link	Link	Link
1.5	rs10260404	(C;T)	1.20x risk of developing ALS		Link	
1.5	rs10464059	(A;G)	Slightly increased risk of developing Parkinson...			
1.5	rs10492519	(A;G)	Slightly increased risk of developing prostate ...			
1.5	rs10859871	(C;C)	Slight ($\sim 1.4 \mathrm{x}$) increase in endometriosis risk			
1.5	rs11171739	(C;T)	1.34x risk of developing Type-1 diabetes		Link	
1.5	rs12037606	(A;G)	1.22x risk of developing Crohn's disease			
1.5	rs12498742	(A;A)	1.25 increased risk for gout			
1.5	rs13149290	(C;T)	Slightly increased risk of developing prostate ...			
1.5	rs13181	(G;T)	1.12x increased risk for cutaneous melanoma	Link	Link	Link
1.5	rs140701	(A;G)	Increased risk for anxiety disorders			
1.5	rs1799950	(A;G)	Very slightly increased breast cancer risk	Link	Link	Link
1.5	rs1801274	(C;T)	Complex; generally greater risk for cancer prog...	Link	Link	Link
1.5	rs1867277	(A;G)	1.5x increased risk for thyroid cancer			

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
1.5	rs199533	(C;T)	Slightly increased risk of developing Parkinson...	Link		
1.5	rs2177369	(C;C)	1.5x increased risk for Alzheimer's disease			
1.5	rs2240340	(A;A)	Slightly increased (1.5x) risk for RA	Link		
1.5	rs2280714	(A;G)	1.4x increased risk of SLE			
1.5	rs2697962	(A;G)	Slightly increased risk of developing Parkinson...			
1.5	rs2736990	(C;T)	Slightly increased risk of developing Parkinson...		Link	
1.5	rs2881766	(G;T)	Slightly increased risk for pregnancy-induced h...			
1.5	rs3087243	(G;G)	Increased risk for autoimmune diseases		Link	
1.5	rs309375	(T;T)	Larger mosquito bites			
1.5	rs3212227	(A;A)	1.43 x increased risk of developing psoriasis an...			
1.5	rs3745516	(A;G)	Slightly increased risk of developing primary b...			
1.5	rs3790565	(C;T)	Slightly increased risk of developing primary b...			
1.5	rs401681	(C;T)	~1.2x increased risk for several types of cance...		Link	
1.5	rs4027132	(A;G)	1.39x increased risk of developing bipolar diso...			
1.5	rs4506565	($\mathrm{A} ; \mathrm{T}$)	1.4 x increased risk for type-2 diabetes		Link	
1.5	rs464049	($\mathrm{T} ; \mathrm{T}$)	Increased risk of schizophrenia in limited stud...			
1.5	rs4845618	(G;T)	1.7x increased melanoma risk			
1.5	rs486907	(A;G)	1.5x increased prostate cancer risk	Link	Link	Link
1.5	rs5219	(C;T)	1.3 x increased risk for type-2 diabetes	Link	Link	Link
1.5	rs5746059	(A;A)	Slightly higher fat mass			
1.5	rs619203	(C;G)	Increases susceptibility to Myocardial Infarcti...	Link	Link	
1.5	rs6498169	(A;G)	1.14x risk of multiple sclerosis		Link	
1.5	rs7341475	(G;G)	1.58x increased schizophrenia risk for women		Link	
1.5	rs7536563	(A;G)	1.12x risk of multiple sclerosis		Link	
1.5	rs872071	(A;G)	${ }^{\sim} 1.5 \mathrm{x}$ increased risk for chronic lymphocytic le...		Link	
1.5	rs9303277	(C;T)	1.46x Slightly increased risk of developing pri...			
1.5	rs966221	(C;C)	1.5x increased stroke risk certain populations			
1.5	rs995030	(G;G)	Non-protective against testicular cancer		Link	
1.4	rs1126497	(C;T)	1.4x increased risk for breast cancer	Link	Link	Link
1.4	rs12770228	(A;G)	1.4x increased risk for meningioma			
1.4	rs1545843	(A;A)	1.4 x increased risk for depression (for those u...			
1.4	rs3131296	(G;G)	1.4 x increased risk for schizophrenia		Link	
1.4	rs3849942	(A;A)	1.4x increased risk for ALS		Link	
1.4	rs6010620	(G;G)	1.4x higher risk for glioma development; but th...		Link	
1.34	rs17465637	(C;C)	1.34x higher risk for myocardial infarction	Link	Link	
1.3	rs1042713	(A;G)	1.3x increased risk that pediatric inhaler use ...	Link	Link	Link
1.3	rs10947262	(C;C)	1.3x increased risk for osteoarthritis			
1.3	rs1375144	(C;T)	1.32x increased risk of developing bipolar diso...			
1.3	rs1434536	(A;G)	1.29x increased breast cancer risk			
1.3	rs1746048	(C;C)	1.03 increased risk for coronary heart disease		Link	
1.3	rs2024513	(A;G)	1.3x higher risk for schizophrenia (among Han C...			
1.3	rs2059693	(C;T)	1.3 x increased risk for testicular cancer			
1.3	rs2295490	(A;G)	1.32x increased risk of early-onset type-2 diab...	Link	Link	
1.25	rs13387042	(A;A)	1.24 x increased risk for breast cancer		Link	
1.2	rs11037909	($\mathrm{T} ; \mathrm{T}$)	1.47x type II diabetes risk	Link		
1.2	rs1800693	(A;G)	Slight (1.2x) increase in risk for multiple scl...	Link	Link	Link
1.2	rs2056116	(A;G)	1.18x risk for breast cancer			
1.2	rs2072590	(G;T)	1.2x increased risk for ovarian cancer			
1.2	rs2814707	(A;A)	$>1.2 \mathrm{x}$ increased risk for ALS		Link	
1.2	rs3740878	(A;A)	1.46x type II diabetes risk; common	Link		Link
1.2	rs393152	(A;G)	Slight increased risk of both PD and AD	Link	Link	
1.2	rs419788	(A;G)	2.0x risk for lupus	Link		
1.2	rs4324715	(C;C)	$>1.5 \mathrm{x}$ increased testicular cancer risk for men			
1.2	rs4977756	(A;G)	1.39x higher risk for glioma development		Link	
1.2	rs8050136	(A;C)	1.2x increased risk for T2D in some populations...		Link	

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
1.2	rs9858542	(A;G)	1.1x risk Crohn's Disease	Link	Link	
1.15	rs748404	(C;T)	Very slightly increased risk (1.15) for lung ca...		Link	
1.1	rs11110912	(C;G)	1.3x high blood pressure risk			
1.1	rs11650354	(C;T)	Possible risk for allergic asthma	Link		
1.1	rs1344706	(G;T)	1.1x increased risk for schizophrenia		Link	
1.1	rs249954	(C;T)	Potentially increased risk of Breast Cancer			Link
1.1	rs2651899	(A;G)	1.1x higher risk for migraines			
1.1	rs2653349	(G;G)	2-6x increased risk for cluster headaches	Link	Link	
1.1	rs34516635	(G;G)	Less longevity for Ashkenazi Jewish women.	Link		Link
1.1	rs688034	(C;T)	1.1x risk higher risk for coronary artery disea...		Link	
1.1	rs6897876	(C;T)	Slight increase in testicular cancer risk for m...			
1.1	rs7171755	(A;G)	Very slight decrease in cortical thickness and ...			
1.1	rs7412	(C;C)	More likely to gain weight if taking olanzapine...	Link	Link	Link
1.1	rs925391	(C;C)	More likely to go bald; common			
1.09	rs12050604	$(\mathrm{A} ; \mathrm{C})$	Very slightly increased risk for lung cancer			
1.07	rs2291834	(C;C)	Very slightly higher risk for myocardial infarc...			
1	rs10761659	(A;G)	1.2x risk of Crohn's disease		Link	
1	rs1143674	(A;G)	1.3 x increased autism risk	Link		
1	rs2228000	($\mathrm{T} ; \mathrm{T}$)	Statistically significant: but slight: increase...	Link	Link	Link
1	rs2273697	(A;G)	Adverse reaction more likely to carbamazepine i...	Link	Link	Link
1	rs2282679	($\mathrm{A} ; \mathrm{C}$)	Somewhat lower vitamin D levels			
1	rs2546890	(A;G)	Higher risk of multiple sclerosis			
1	rs3194051	($\mathrm{A} ; \mathrm{A}$)	$>1.1 \mathrm{x}$ risk of type-1 diabetes	Link	Link	Link
1	rs6932590	(T; T)	1.1x increased risk for schizophrenia		Link	
0.1	rs601338	(G;G)	Susceptible to Norovirus infections	Link	Link	Link
0	rs1128503	(T;T)	Likely to require more methadone during heroin ...	Link	Link	Link
0	rs3813929	(C;C)	Possible weight gain if taking olanzapine		Link	Link
0	rs4293393	(T;T)	1.25x Increased Risk of CKD for T allele in ...			
0	rs440446	(G;G)	Increased risk in men for biliary conditions	Link		
0	rs6314	(C;C)	Higher risk for RA	Link	Link	
0	rs7787082	(G;G)	7x less likely to respond to certain antidepres...		Link	
0	rs855791	(T;T)	$0.2 \mathrm{~g} / \mathrm{dL}$ lower hemoglobin on average	Link	Link	Link

3.3 Genosets (Multi-variant Phenotypes)

Magnitude	Identifier	Summary
3.1	gs191	Problem metabolizing NSAIDs
2.5	gs155	CYP3A5 non-expressor
2.5	gs161	CYP2C9 Intermediate Metabolizers
2.5	gs281	Part of the 88\% of the population claimed not t...
2.5	gs298	Increased surveillance for colorectal cancer re...
2	gs101	Probably able to digest milk
2	gs154	NAT2 Slow metabolizer
2	gs173	CYP2D6*10
2	gs246	APOE3/APOE3
1.5	gs185	The beta blocker metoprolol is effective with $1 \ldots$
1.5	gs220	HLA-B*1502?
1.5	gs247	Parkinson's Disease Risk
1.2	gs184	Able to taste bitterness.
1	gs163	CYP2D6*2A
0	gs158	CYP1A2 normal metabolizer

4 Raw Data

The raw data used to create this report has been assigned the identifier ERS1176598 in the European Nucleotide Archive (ENA) hosted at the European Bioinformatics Institute (EBI).

These data will not be accessible unless the report is approved. This will happen by default one month after the report is issued, or if the report is approved for immediate release within the one month period. Participants can also withdraw from the study at any time in which case the report and the data will not be released and will be deleted.

If the data has already been released, it can be accessed at: http://www.ebi.ac.uk/ena/data/view/ERS1176598

5 Report Metadata

Resource	Version	Website
Genome	GRCh38	Link
BWA	0.7 .12	Link
SAMtools	1.3	Link
GATK	$3.4-46$	Link
PLINK	v1.90b3.35	Link
VEP	88	Link
SNPedia	$30-$ Jul-2017	Link
ExAC	v0.3.1	Link
GetEvidence	16-Dec-2016	Link
ClinVar	16-Dec-2016	Link

Table 5: Analysis Pipeline Versions

Report generated on August 2, 2017.

