PGP-UK Genomics Report for ukB8CD68

1 Summary

This is the genome report was produced using collaborative research tools, including SNPedia and GetEvidence. This section shows an overview of all the small variants which were found in the genome for this individual, when compared with a reference genome. These variants are summarised in Table 1 and the pie-charts in Figures 2, 3 and 4.

This report was generated automatically and is not clinically approved. It is provided for personal and research purposes only.

This document contains hyperlinks, shown in grey, that will take you to external websites where you can find more detailed explanations. Some of the technical terms are also explained in more detail in the Ensembl Glossary. We would welcome your feedback about this report, for example, if you would like more information about anything or if any of the links have become inactive. You can contact us on: pgp-uk@ucl.ac.uk.

This summary shows an overview of all the variants which were found in the genome for this individual. The "variants remaining after filtering" refers to any differences in the DNA identified when compared to the reference genome. Of these, the majority will have already been found in some other sequenced individual and put on a database (existing variants) while others have not yet been annotated (novel variants).
"Overlapped genes" refers to the number of times where a variant was found in a region of the genome containing a gene. The diagram in Figure 1 is a simplification of the usual gene structure. "Exon" refers to the part of the gene which goes on to form a protein, and variants in this part of the gene are more likely to cause changes in the shape of the protein. Upstream, downstream, intronic and intergenic variants are more likely to alter the regulation of that gene but will not change the protein itself.

A transcript for a protein-coding gene can include the exons, introns and other gene features that are transcribed and important for gene function but might not be translated into the final protein. Not all transcripts are for protein-coding genes, with many containing non-coding RNAs that can be overlapping other genes, in introns or in intergenic regions.

Figure 1: Diagram of gene structure indicating locations of potential variants

Feature	Count
Lines of input read	4953821
Variants filtered out	0
Novel / existing variants	$485281(9.8) / 4457810(90.2)$
Overlapped genes	56845
Overlapped transcripts	67659
Overlapped regulatory features	167951

Table 1: Variant calling summary

There are several different types of genomic variants. The most common change is when one single building block of the DNA (called a nucleotide) is changed, called a single nucleotide variants (SNV). Other variant types include insertions, where the DNA in the individual is longer than the reference sequence due to the insertion of one or more nucleotides; and deletions, where a few nucleotides are missing compared to the reference sequence.

Some of these changes will have no effect on the protein, while some changes may alter the protein function to varying degrees. The PolyPhen analysis software attempts to quantify the effect each mutation will have on the protein function. This ranges from "benign" where no change to the protein function is expected, to "probably damaging" where it is predicted that the mutation will affect protein function. It is nevertheless important to note that what is "damaging" for the protein is not necessarily damaging for the individual.

Figure 2: PolyPhen Summary

Figure 3: Variant Class

Figure 4: Consequence type

2 Ancestry

This plot shows the distribution of the genomes of different populations. Data from several studies which used whole genome sequencing was used to see the relationships between the genomes of the populations. It shows how closely related certain populations are genetically: Groups which cluster closely are more genetically similar than groups which are further apart. The black star symbol shows where this PGP-UK participant sits in relation to other populations, indicating their ancestry and their most closely related populations according to genetic sequence.

Based on the populations defined in the 1000 genomes project (1 kGP), the ancestry composition for this individual is inferred to be 1.4 percent African, 13.3 percent East Asian, 82.4 percent South Asian, 2.9 percent European.

Please note that this analysis is limited by the populations available in the 1 kGP data. If there are European subpopulations reported, and the ancestry of the participant does not correspond to any of the 1 kGP populations, the closest 1 kGP sampled subpopulation will be shown (even though it might be different from the participant's actual ancestry).

Ancestry ukB8CD68

Figure 5: Ancestry Principal Component Analysis

3 Traits (based on SNPedia information)

Existing research has associated many variants with phenotypic traits, some of which can be perceived as beneficial while others appear to have a harmful effect. Some traits are complex and can be affected by several variants. It is likely that some of these would confer a higher risk while others a lower risk of trait manifestation. These can not be combined linearly to produce an actual risk of disease.

It is important to note that in most cases genomic data is probabilistic, not deterministic- i.e. having a genetic predisposition for a disease is not a diagnosis; rather, it shows an increased likelihood of developing that disease. Also, one person can have both potentially beneficial and harmful variants in the same gene, or associated with the same disease.

Some variants can also affect certain populations more, or will only affect a particular gender. For example, a variant for higher risk of endometriosis in the sequence of a male will not directly affect that person, but can be passed on to descendants.

While many traits are the result of a unique variant, many are the combination of several variants throughout the genome. In SNPedia, these are called genosets. These can integrate some of the information already present in the single variant tables, or be the combination of variants that have no phenotypic effect on their own, but contribute to a trait when together.

The variants in the following tables are sorted by magnitude. This is an subjective measure defined in SNPedia to highlight the perceived importance of the genotype described. At the moment this scale goes from 0 to 10 . You can read more about it by visiting their explanatory webpage.

As our knowledge grows, the interpretation of the effect of certain variants might change. Clicking on the links in the genome report tables will take you to websites containing more information about each variant.

3.1 Possibly Beneficial Traits

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
2.4	rs3750817	(T;T)	0.64x reduced risk for breast cancer: and highe...			
2.4	rs9272346	(G;G)	0.08x risk type-1 diabetes		Link	
2.1	rs547154	(A;C)	0.47x decreased risk for AMD			Link
2.1	rs6505162	(A;A)	0.43 x decreased risk for esophageal cancer	Link		
2	rs1026732	(A;A)	$<0.70 \mathrm{x}$ risk for restless legs		Link	
2	rs10468017	($\mathrm{T} ; \mathrm{T}$)	Associated with higher HDL cholesterol		Link	
2	rs11045585	($\mathrm{A} ; \mathrm{A}$)	24% chance (lower than average) of docetaxel-in...		Link	
2	rs11635424	(A;A)	$<0.70 \mathrm{x}$ risk for restless legs		Link	
2	rs12593813	(A;A)	<0.71 x risk for restless legs		Link	
2	rs12979860	(C;C)	$\sim 80 \%$ of such hepatitis C patients respond to tr...		Link	Link
2	rs2060793	(A;A)	Lower serum levels of vitamin D			
2	rs2241423	(A;A)	0.79 decreased risk for obesity			
2	rs25487	(A;A)	0.7x lower risk for skin cancer	Link	Link	Link
2	rs3738579	(C;T)	0.5x decreased risk for cervical cancer: HNSCC....			
2	rs4073582	(A;A)	Lower risk for gout	Link		
2	rs4149268	(A;G)	Associated with higher HDL cholesterol		Link	
2	rs6807362	(G;G)	Decreased autism risk	Link	Link	
2	rs7216389	(C;C)	0.69x lower risk of Childhood Asthma.		Link	
2	rs763110	(T;T)	~0.80x reduced cancer risk			Link
2	rs7776725	($\mathrm{T} ; \mathrm{T}$)	Stronger bones		Link	
2.0	rs3790844	(C;C)	Reduced risk (0.59x) of pancreatic cancer			
1.8	rs1128535	(A;G)	0.77 x risk for Crohn's disease			
1.8	rs3814113	(C;T)	0.8 x decreased risk for ovarian cancer		Link	
1.8	rs4714156	(C;C)	<0.61 x risk for restless legs			
1.8	rs6897932	(C;T)	0.91x decreased risk for multiple sclerosis	Link	Link	Link
1.8	rs7101429	(A;G)	0.70x reduced risk for Alzheimer's risk			
1.6	rs3775948	(C;C)	Slightly lower risk for gout			

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
1.5	rs11136000	($\mathrm{T} ; \mathrm{T}$)	0.84x decreased risk for Alzheimer's disease		Link	
1.5	rs17367504	(G;G)	Reduction in blood pressure		Link	
1.5	rs4149274	(C;T)	Associated with higher HDL (good) cholesterol			
1.5	rs4939883	(C;C)	Associated with higher HDL cholesterol		Link	
1.5	rs5888	(C;C)	Higher HDL cholesterol but lower risk for age-r...	Link		
1.5	rs6427528	(A;G)	For rheumatoid arthritis patients: better respo...			
1.5	rs9939609	(T;T)	Lower risk of obesity and Type-2 diabetes		Link	
1.4	rs1165205	($\mathrm{A} ; \mathrm{T}$)	0.85x decreased gout risk		Link	
1.4	rs9402571	(G;T)	Slightly decreased risk for type-2 diabetes			
1.25	rs10088218	(A;G)	0.76 x decreased risk for ovarian cancer			
1.2	rs11246226	$(\mathrm{A} ; \mathrm{C})$	Decreased risk of schizophrenia in limited stud...		Link	
1.2	rs4686484	(G;G)	Slightly decreased risk for celiac disease			
1.1	rs7568369	(G;T)	0.90x reduced risk of obesity			
1	rs182549	(C;T)	Can digest milk.			Link
1	rs2952768	(C;T)	Slightly less drug dependence: decreased effect...			Link
1	rs7850258	(A;G)	Typical odds of developing primary hypothyroidi...			
0.1	rs891512	(G;G)	Lower blood pressure than those with an A allel...	Link		
0	rs1047781	(A;A)	ABH blood group "Secretor" status if Japanese	Link	Link	Link
0	rs16990018	($\mathrm{A} ; \mathrm{A}$)	PrP Codon 171 Asn - Non-pathogenic variant	Link		Link
0	rs17244841	($\mathrm{A} ; \mathrm{A}$)	More responsive to statin treatment		Link	Link
0	rs1799782	(C;C)	Lower risk for skin cancer	Link	Link	
0	rs1800562	(G;G)	Not a C282Y hemochromatosis carrier.	Link	Link	Link
0	rs28933385	(G;G)	Prion protein Codon 200 (E) - Non pathogenic va...			Link
0	rs312481	(C;C)	Better response to certain calcium channel bloc...			
0	rs5065	($\mathrm{A} ; \mathrm{A}$)	1.12x risk on diuretic; if hypertensive: better...	Link	Link	Link
0	rs6259	(G;G)	Best inverse correlation between tea-drinking: ...	Link	Link	
0	rs74315403	(G;G)	PrP codon 178 (D) - non pathogenic variant			Link
0	rs9394492	(C;C)	$<0.76 \mathrm{x}$ risk for restless legs			
0	rs9951307	(A;G)	0.10 decreased risk for brain edema after a str...			

3.2 Possibly Harmful Traits

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
4	rs1333049	(C;C)	1.9x increased risk for coronary artery disease...		Link	
3	rs10897346	(C;C)	If depressed: 2.6 x more likely to not respond t...			
3	rs150681845	(A;G)	Carrier of an orofaciodigital mutation	Link		
3	rs1799999	(T; T)	Insulin resistance	Link	Link	Link
3	rs2306402	(C;T)	1.18x increased risk for late-onset Alzheimer's...			
3	rs258322	(T; T)	2x increased risk of Melanoma		Link	
3	rs4244285	(A;G)	Poorer metabolizer of several popular medicines...	Link	Link	Link
3	rs6920220	(A;G)	1.2x risk Rheumatoid Arthritis		Link	
2.7	rs10830963	(C;G)	Increased type-2 diabetes risk; higher gestatio...		Link	
2.5	rs10490924	(G;T)	2.7 x risk for age related macular degeneration	Link	Link	Link
2.5	rs13266634	(C;T)	Increased risk for type-2 diabetes	Link	Link	Link
2.5	rs187238	(G;G)	Hypertension increases risk 3.75x for sudden ca...			
2.5	rs339331	(T;T)	Prostate cancer risk			
2.5	rs6441286	(G;G)	3.08x chance of developing primary biliary cirr...		Link	
2.3	rs37973	(G;G)	Among asthmatics: 2.3 x more likely to show less...			Link
2.3	rs7966230	(C;G)	Slightly lower levels of plasma VWF			
2.2	rs2004640	(G;T)	1.4x increased risk for SLE		Link	Link
2.1	rs10411210	(T;T)	1.15 x increased risk of colorectal cancer		Link	
2.1	rs10811661	(T;T)	1.2 x increased risk for type-2 diabetes		Link	
2.1	rs1329428	(G;G)	2 x increased risk for macular degeneration			
2.1	rs2231137	(A;G)	${ }^{2} 1.5-3 \mathrm{x}$ increased risk for ischemic stroke	Link	Link	Link
2.1	rs2254958	(C;T)	1.24x increased risk for Alzheimer's			
2.1	rs2294008	(T; T)	Increased risk of gastric and bladder cancer	Link	Link	
2.1	rs2383207	(G;G)	Increased risk for heart disease			
2.1	rs2494732	(C;C)	Greater odds of cannabis-associated psychosis	Link	Link	
2.1	rs4430796	(A;A)	1.38 x increased risk for prostate cancer		Link	
2.1	rs646776	(A;A)	1.2 x risk of coronary artery disease		Link	
2.1	rs7837688	(G;T)	1.7 x increased risk for prostate cancer			
2.1	rs795484	(A;G)	Increased morphine dose requirement and postope...			
2	rs10086908	(C;T)	1.7x increased risk for prostate cancer			
2	rs10090154	(C;T)	1.4x increased risk for prostate cancer			
2	rs10096097	(G;G)	Increased Anorexia Nervosa risk			
2	rs1024611	(C;T)	Increased risk of exercise induced ischemia			Link
2	rs10248420	(A;A)	7x less likely to respond to certain antidepres...		Link	
2	rs10513789	(G;T)	Increased risk of Parkinson's disease			
2	rs10757272	(T;T)	1.54x increased risk for Coronary artery diseas...			
2	rs10984447	($\mathrm{A} ; \mathrm{A}$)	$>1.17 \mathrm{x}$ increased risk for multiple sclerosis		Link	
2	rs10994336	(C;T)	1.45x increased odds of developing bipolar diso...		Link	
2	rs11190870	(C;T)	Possibly increased risk of scoliosis			
2	rs1160312	(A;G)	1.6x increased risk of Male Pattern Baldness.		Link	
2	rs11983225	(T;T)	7x less likely to respond to certain antidepres...		Link	
2	rs12431733	(T;T)	Increased risk of developing Parkinson's Diseas...		Link	
2	rs12567232	(A;G)	Increased risk for Crohn's Disease		Link	
2	rs13254738	(A;C)	1.18x prostate cancer risk		Link	
2	rs1360780	(C;T)	1.3x increased risk for depression		Link	
2	rs1585215	(A;G)	2x increased risk for Hodgkin lymphoma			
2	rs1691053	(A;G)	Increased risk of developing prostate cancer			
2	rs16942	(G;G)	Very slightly increased breast cancer risk	Link	Link	Link
2	rs16944	(G;G)	Increased risk of mental disorders		Link	
2	rs1734791	(A;A)	1.4x increased risk for lupus			
2	rs17435	(T;T)	1.4 x increased risk for lupus			
2	rs1799732	(-; ${ }^{\text {(}}$)	1.3x increased adenoma recurrence risk		Link	
2	rs1800896	(A;A)	1.8 x increased prostate cancer risk			

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
2	rs1801160	(A;G)	Possible 5-fluorouracil toxicity	Link	Link	Link
2	rs2073963	(G;T)	Increased risk of baldness			
2	rs2156921	(A;G)	1.29 x increased risk for depression			
2	rs2201841	(C;T)	1.5x increased risk for Crohn's disease; 2x inc...		Link	
2	rs2235015	(G;G)	Somewhat less likely to respond to certain anti...	Link	Link	
2	rs2235040	(G;G)	7x less likely to respond to certain antidepres...	Link	Link	
2	rs2235067	(G;G)	7x less likely to respond to certain antidepres...			
2	rs2274223	(A;G)	1.5x increased risk for stomach and esophageal ...	Link	Link	Link
2	rs2305480	(C;T)	3.5x increase in risk of asthma for Han Chinese...	Link	Link	
2	rs241448	(C;T)	1.51x increased risk for Alzheimer's	Link		Link
2	rs2736990	(C;C)	Increased risk of developing Parkinson's Diseas...		Link	
2	rs3212227	($\mathrm{A} ; \mathrm{C}$)	Significantly increased risk of developing cerv...			
2	rs326	(A;A)	Lower HDL cholesterol		Link	Link
2	rs358806	(C;C)	1.78x increased risk of developing Type-2 diabe...		Link	
2	rs3738919	(A;C)	1.94x risk of developing rheumatoid arthritis			
2	rs4148739	(A;A)	7x less likely to respond to certain antidepres...		Link	
2	rs4242382	(A;G)	1.7x increased risk for prostate cancer		Link	
2	rs4633	(C;T)	Higher risk for endometrial cancer	Link	Link	Link
2	rs4968451	($\mathrm{A} ; \mathrm{C}$)	1.61x increased risk for meningioma			
2	rs520354	(A;G)	Increased risk in men for biliary conditions			
2	rs5759167	(T;T)	Higher prostate cancer risk		Link	
2	rs6498169	($\mathrm{A} ; \mathrm{A}$)	$>1.14 \mathrm{x}$ risk of multiple sclerosis		Link	
2	rs6601764	(C;C)	1.52x increased risk of developing Crohn's dise...		Link	
2	rs6700125	(T;T)	1.76x increased risk for ALS			
2	rs6896702	($\mathrm{T} ; \mathrm{T}$)	Increased risk of developing Parkinson's Diseas...			
2	rs6908425	(C;C)	1.95x increased risk of developing Crohn's dise...		Link	
2	rs7250872	(T; T)	Increased risk of developing bipolar disorder	Link	Link	
2	rs7442295	($\mathrm{A} ; \mathrm{A}$)	$\sim 4 \mathrm{x}$ higher risk for hyperuracemia		Link	
2	rs7639618	(C;T)	1.45x increased osteoarthritis risk	Link		
2	rs7774434	(C;C)	Increased risk of developing primary biliary ci...			
2	rs7794745	($\mathrm{A} ; \mathrm{T}$)	Slightly increased risk for autism		Link	Link
2	rs7807268	(C;G)	1.3x risk for Crohn's disease		Link	
2	rs800292	(C;C)	5\% higher risk of Age related macular degenerat...	Link	Link	Link
2	rs828907	(G;T)	Slightly increased risk of bladder cancer and 2...			
2	rs854560	(A;A)	Higher risk for heart disease: diabetic retinop...	Link	Link	Link
2	rs9652490	(A;A)	${ }^{\text {2 }}$ 2x increased risk for Parkinson's disease: and...		Link	
2	rs965513	(A;G)	1.77x increased thyroid cancer risk		Link	
2.0	rs1044396	(C;C)	Increased risk of Nicotine dependence among mal...	Link	Link	Link
2.0	rs2305795	(A;A)	1.64x higher risk of narcolepsy compared to (G;...			Link
2.0	rs9642880	(T;T)	1.5x increased bladder cancer risk		Link	
1.8	rs2278206	(T;T)	1.16x increased risk for asthma	Link	Link	
1.8	rs733618	(A;G)	1.87 x risk for myasthenia gravis			
1.7	rs2024513	(A;A)	1.7x higher risk for schizophrenia (among Han C...			
1.6	rs2736100	(G;G)	1.6x higher risk for glioma development		Link	
1.6	rs356219	(G;G)	1.6x increased risk for Parkinson's disease			
1.6	rs3764880	(A;A)	1.2-1.8x increased tuberculosis risk	Link	Link	
1.5	rs10260404	(C;T)	1.20x risk of developing ALS		Link	
1.5	rs10859871	(C;C)	Slight ($\sim 1.4 \mathrm{x}$) increase in endometriosis risk			
1.5	rs10883365	(A;G)	1.2x increased risk for developing Crohn's dise...		Link	
1.5	rs11171739	(C;T)	1.34 x risk of developing Type-1 diabetes		Link	
1.5	rs1154155	(G;T)	1.94x increased risk for narcolepsy		Link	
1.5	rs1169300	(A;G)	~1.5x increased lung cancer risk			
1.5	rs12037606	(A;G)	1.22x risk of developing Crohn's disease			
1.5	rs1223271	(A;G)	Slightly increased risk of developing Parkinson...		Link	
1.5	rs12498742	(A;A)	1.25 increased risk for gout			

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
1.5	rs13149290	(C;C)	Slightly increased risk of developing prostate ...			
1.5	rs144848	(G;T)	Very slightly increased breast cancer risk	Link	Link	Link
1.5	rs17115100	(G;T)	Slightly increased risk of developing Parkinson...	Link	Link	
1.5	rs1801020	(T;T)	1.31x increased risk of heart disease	Link		Link
1.5	rs1801274	(C;T)	Complex; generally greater risk for cancer prog...	Link	Link	Link
1.5	rs1867277	(A;G)	1.5x increased risk for thyroid cancer			
1.5	rs2240340	($\mathrm{A} ; \mathrm{G}$)	Slightly increased (1.5x) risk for RA	Link		
1.5	rs2241880	(C;T)	1.4x increased risk for Crohn's disease in Cauc...	Link	Link	Link
1.5	rs2272127	(C;C)	Associated with herpes and schizophrenia			
1.5	rs2280714	(A;G)	1.4x increased risk of SLE			
1.5	rs2286812	(C;T)	${ }^{\sim} 2 \mathrm{x}$ higher risk for Fuchs' dystrophy: a corneal...			
1.5	rs2464196	($\mathrm{C} ; \mathrm{T}$)	$\sim 1.5 \mathrm{x}$ increased lung cancer risk	Link	Link	Link
1.5	rs27388	(A;G)	Slightly increased risk of developing schizophr...			
1.5	rs2881766	(T;T)	Slightly increased risk for pregnancy-induced h...			
1.5	rs3087243	(G;G)	Increased risk for autoimmune diseases		Link	
1.5	rs356220	(T;T)	Increased risk of Parkinson's Disease			
1.5	rs393152	($\mathrm{A} ; \mathrm{A}$)	Increased risk of both PD and AD	Link	Link	
1.5	rs401681	(C;T)	~ 1.2 x increased risk for several types of cance...		Link	
1.5	rs4585	(T;T)	Slightly poorer (0.75 x) response to metformin i...			
1.5	rs464049	($\mathrm{C} ; \mathrm{T}$)	Increased risk of schizophrenia in limited stud...			
1.5	rs4785763	$(\mathrm{A} ; \mathrm{C})$	1.5x higher risk for melanoma		Link	
1.5	rs486907	(A;G)	1.5x increased prostate cancer risk	Link	Link	Link
1.5	rs5746059	($\mathrm{A} ; \mathrm{A}$)	Slightly higher fat mass			
1.5	rs619203	(C;G)	Increases susceptibility to Myocardial Infarcti...	Link	Link	
1.5	rs699473	(C;T)	$\sim 1.5 \mathrm{x}$ increased brain tumor risk			
1.5	rs7341475	(G;G)	1.58 x increased schizophrenia risk for women		Link	
1.5	rs872071	(A;G)	${ }^{\sim} 1.5 \mathrm{x}$ increased risk for chronic lymphocytic le...		Link	
1.5	rs9303277	(C;T)	1.46x Slightly increased risk of developing pri...			
1.5	rs995030	(G;G)	Non-protective against testicular cancer		Link	
1.4	rs1800693	(G;G)	Slight (1.4x) increase in risk for multiple scl...	Link	Link	Link
1.4	rs1801157	(A;G)	1.4 x higher risk for breast cancer			
1.4	rs2230201	(A;G)	1.4x risk of lupus	Link		
1.4	rs3131296	(G;G)	1.4x increased risk for schizophrenia		Link	
1.34	rs17465637	(C;C)	1.34x higher risk for myocardial infarction	Link	Link	
1.3	rs1042713	(A;G)	1.3x increased risk that pediatric inhaler use ...	Link	Link	Link
1.3	rs1047031	($\mathrm{A} ; \mathrm{A}$)	1.3 x increased risk for periodontitis	Link		
1.3	rs1260326	(C;T)	Slightly higher risk for gout	Link	Link	Link
1.3	rs13361189	(C;T)	1.3x increased risk for Crohn's disease		Link	
1.3	rs1375144	($\mathrm{C} ; \mathrm{T}$)	1.32x increased risk of developing bipolar diso...			
1.3	rs1434536	(A;G)	1.29x increased breast cancer risk			
1.3	rs16847548	(C;T)	1.3x increased risk for sudden cardiac death in...			
1.3	rs1746048	(C;C)	1.03 increased risk for coronary heart disease		Link	
1.3	rs34330	(T;T)	1.2x higher breast cancer risk; 1.3x higher ris...			
1.3	rs4295627	(G;T)	1.36x higher risk for glioma development		Link	
1.3	rs4958847	$(\mathrm{A} ; \mathrm{G})$	1.3x increased risk for Crohn's disease			
1.25	rs748404	(T;T)	Slightly increased risk (1.25) for lung cancer...		Link	
1.2	rs11037909	(T;T)	1.47x type II diabetes risk	Link		
1.2	rs1344706	(T;T)	1.2x increased risk for schizophrenia		Link	
1.2	rs2076295	(G;T)	One copy of the risk allele (G): slightly incre...			
1.2	rs2665390	(C;T)	1.2x increased risk for ovarian cancer			
1.2	rs2814707	(A;G)	1.2x increased risk for ALS		Link	
1.2	rs3740878	($\mathrm{A} ; \mathrm{A}$)	1.46x type II diabetes risk; common	Link		Link
1.2	rs3849942	($\mathrm{A} ; \mathrm{G}$)	1.2x increased risk for ALS		Link	
1.2	rs419788	(A;G)	2.0x risk for lupus	Link		
1.2	rs449647	$(\mathrm{A} ; \mathrm{T})$	Possibly lower levels of ApoE			

Mag.	Identifier	Genotype	Summary	ExAC	GetEvidence	ClinVar
1.2	rs498872	(C;T)	1.2x higher risk for glioma development		Link	
1.2	rs6010620	(A;G)	1.2x higher risk for glioma development: 1.17 x ...		Link	
1.2	rs9858542	($\mathrm{A} ; \mathrm{G}$)	1.1x risk Crohn's Disease	Link	Link	
1.1	rs11110912	(C;C)	1.3x high blood pressure risk			
1.1	rs13387042	(A;G)	1.12x increased risk for breast cancer		Link	
1.1	rs249954	($\mathrm{C} ; \mathrm{T}$)	Potentially increased risk of Breast Cancer			Link
1.1	rs2653349	(G;G)	2-6x increased risk for cluster headaches	Link	Link	
1.1	rs34516635	(G;G)	Less longevity for Ashkenazi Jewish women.	Link		Link
1.1	rs4324715	(C;T)	1.5x increased testicular cancer risk for men			
1.1	rs6897876	($\mathrm{C} ; \mathrm{T}$)	Slight increase in testicular cancer risk for m...			
1.1	rs7412	(C;C)	More likely to gain weight if taking olanzapine...	Link	Link	Link
1.1	rs925391	(C;C)	More likely to go bald; common			
1.07	rs2291834	(C;C)	Very slightly higher risk for myocardial infarc...			
1	rs10504861	(G;G)	Major allele: normal risk of migraine			
1	rs1143674	(A;G)	1.3x increased autism risk	Link		
1	rs2282679	$(\mathrm{A} ; \mathrm{C})$	Somewhat lower vitamin D levels			
1	rs2546890	(A;G)	Higher risk of multiple sclerosis			
1	rs3194051	($\mathrm{A} ; \mathrm{A}$)	$>1.1 \mathrm{x}$ risk of type-1 diabetes	Link	Link	Link
1	rs6932590	(C;T)	1.1x increased risk for schizophrenia		Link	
1	rs761100	(G;G)	Higher risk for dyslexia			
1	rs987525	$(\mathrm{A} ; \mathrm{C})$	2.5x increased risk for cleft lip		Link	
0.1	rs601338	(G;G)	Susceptible to Norovirus infections	Link	Link	Link
0	rs1042173	($\mathrm{T} ; \mathrm{T}$)	Among alcoholics: likely to be heavier drinkers...			
0	rs1128503	($\mathrm{T} ; \mathrm{T}$)	Likely to require more methadone during heroin ...	Link	Link	Link
0	rs3761418	($\mathrm{A} ; \mathrm{A}$)	1.3x increased risk for depression			
0	rs3813929	(C;C)	Possible weight gain if taking olanzapine		Link	Link
0	rs4293393	($\mathrm{T} ; \mathrm{T}$)	1.25x Increased Risk of CKD for T allele in ...			
0	rs4712653	($\mathrm{T} ; \mathrm{T}$)	2 x increased risk for neuroblastoma			
0	rs4795400	($\mathrm{T} ; \mathrm{T}$)	If 4 years old or younger: ${ }^{\text {2 }} 2.5 \mathrm{x}$ increased asth...		Link	
0	rs6314	($\mathrm{C} ; \mathrm{C}$)	Higher risk for RA	Link	Link	
0	rs7787082	(G;G)	7x less likely to respond to certain antidepres...		Link	
0	rs855791	(T;T)	$0.2 \mathrm{~g} / \mathrm{dL}$ lower hemoglobin on average	Link	Link	Link

3.3 Genosets (Multi-variant Phenotypes)

Magnitude	Identifier	Summary
2.6	gs296	Lower heart attack risk than average
2.5	gs155	CYP3A5 non-expressor
2.5	gs157	More stimulated by coffee
2.5	gs281	Part of the 88\% of the population claimed not t...
2.5	gs285	You will lose 2.5x as much weight on a low fat ...
2	gs101	Probably able to digest milk
2	gs154	NAT2 Slow metabolizer
2	gs181	CYP2D6*2
2	gs246	APOE3/APOE3
2	gs249	Parkinson's Disease Risk
1.5	gs185	The beta blocker metoprolol is effective with $1 \ldots$
1	gs163	CYP2D6*2A

4 Raw Data

The raw data used to create this report has been assigned the identifier ERS1176569 in the European Nucleotide Archive (ENA) hosted at the European Bioinformatics Institute (EBI).

These data will not be accessible unless the report is approved. This will happen by default one month after the report is issued, or if the report is approved for immediate release within the one month period. Participants can also withdraw from the study at any time in which case the report and the data will not be released and will be deleted.

If the data has already been released, it can be accessed at: http://www.ebi.ac.uk/ena/data/view/ERS1176569

5 Report Metadata

Resource	Version	Website
Genome	GRCh38	Link
BWA	0.7 .12	Link
SAMtools	1.3	Link
GATK	$3.4-46$	Link
PLINK	v1.90b3.35	Link
VEP	88	Link
SNPedia	$30-J u l-2017$	Link
ExAC	v0.3.1	Link
GetEvidence	16-Dec-2016	Link
ClinVar	16-Dec-2016	Link

Table 5: Analysis Pipeline Versions

Report generated on August 2, 2017.

